Matplotlib Vis. Function
자주 사용하는 기능은 함수로 만들면 편리합니다. 마찬가지로 자주 그리는 그림은 함수로 만들면 좋습니다. Matplotlib 객체지향을 사용해 함수를 만듭시다. 1. Parity plot 머신러닝 후 참값을 x축, 예측값을 y축에 놓고 얼마나 비슷한지 평가하고는 합니다. 이런 그림을 parity plot이라고 하며, 매우 자주 그리는 그림입니다. 그림이
자주 사용하는 기능은 함수로 만들면 편리합니다. 마찬가지로 자주 그리는 그림은 함수로 만들면 좋습니다. Matplotlib 객체지향을 사용해 함수를 만듭시다. 1. Parity plot 머신러닝 후 참값을 x축, 예측값을 y축에 놓고 얼마나 비슷한지 평가하고는 합니다. 이런 그림을 parity plot이라고 하며, 매우 자주 그리는 그림입니다. 그림이
부족한 데이터는 기존 분포를 반영해 만들 수 있습니다. 마르코프 체인 몬테카를로(MCMC) 방법의 일종인 깁스 샘플링(Gibbs Sampling)을 사용합시다. matplotlib 3.4. 버전에서 추가된 subfigure와 subplot_mosaic 기능도 실습해보고, matplotlib을 이용해 3D plot 애니메이션도 만들어 봅니다. contri
데이터 불균형으로 인해 train, validation, test dataset의 결과가 따로 놉니다. 층화추출로 데이터를 최대한 균등하게 분할합시다. hyperparameter도 라이브러리를 사용해 편리하게 피팅합시다. 6. Validation set 고정 새로운 노트북을 만들어 데이터를 불러옵니다.123456789101112131415%matplot
contributor: 김홍비님 지난 글에 이어 GridSearchCV를 시각화해봅니다. 화면이라는 매체의 제약상 한 번에 두 개의 변수밖에 바꾸지 못합니다. 그런데도 제법 속이 뚫리고 다음에 뭘 할지 아이디어가 생깁니다. 4. 비선형 모델: kernel SVM sklearn: svm.SVR 선형 모델로는 한계가 있는 것 같습니다. 비선형성을 가
데이터 시각화는 머신러닝 과정을 확인하기 좋습니다. 하이퍼파라미터에 따라 확인할 값이 여럿 있고, 숫자로 확인할 수도 있지만 눈에 잘 들어오지 않아 그림으로 표현해 보았습니다. 1. 데이터 & 분석 설정 What’s new in Matplotlib 3.4.0 필요한 라이브러리들을 불러옵니다. 업데이트된 matplotlib 버전 3.4.1을 사
데이터 시각화는 예쁜 그림에 머물러서는 안 된다고 생각합니다. 데이터 분석의 일환인 만큼 분석의 목적에 충실해야 하는 것은 물론이고, 데이터 시각화를 수행하는 사람만큼 데이터를 깊이 파는 사람이 없습니다. 최고의 조언자로서의 데이터 시각화에 도전해봅니다. 1. 데이터 Pega Devlog: 수능 Trend Visualization한국교육과정평가원 대학수
contributor : Jerry Kim 색을 고르다 보면 이런 단어들을 만납니다:Brightness, Lightness, Value, Luminosity, Luma 우리 말로는 모두 명도, 명도, 명도, 명도, 명도이지만 의미가 모두 다릅니다. 같은 뜻으로 생각하면 실수할 수도 있으니 한번 짚고 넘어갑시다. 1. 용어 정리 Gilchrist, “
시각화는 데이터를 그림으로 표현하는 작업입니다. 그런데 한번 그림이 되면 진짜 그림처럼 취급할 수 있습니다. 밀도함수에 컬러맵을 입혀봅시다. 1. Imitating Ridge Plot by R Gallery of ggridges examplesPega Devlog: Ridgeline Plot 인터넷을 다니다가 R로 그려진 멋진 그림을 봤습니다.
시각화에서 색상은 중요한 요소입니다. 그러나 관성적으로 프로그램이 제공하는 기본값을 사용하는 분들이 많습니다. matplotlib은 푸짐한 상을 차려놓고 우리를 기다리고 있습니다. 골라봅시다. 1. Example Bed 화면상에서 색상은 대개 RGB 3채널로 구성됩니다. 여기에 불투명도 Alpha가 붙어 RGBA 4채널이 되기도 합니다. 같은 색상도 숫
시각화의 대상은 데이터만이 아닙니다. 데이터를 비롯해 이름, 단위를 써줘야 하고 데이터를의 분석결과를 함께, 또는 따로 강조해서 그려야 합니다. 데이터마다 붙는 꼬리표와 파생변수를 클래스를 이용해서 정리해 봅시다. 1. 데이터 10만개 정도의 상자 데이터가 있습니다. 길이(length), 너비(width), 높이(height)가 있고, 여기로부터 입체