Matplotlib Animation
정지된 그림으로는 볼 수 없는 것들이 있습니다. 시간에 따른 변화나 입체 도형의 뒷면이 그것입니다. 애니메이션을 활용해 이를 보완합니다. 1. Matplotlib animation matplotlib.animation Matplotlib에서 사용할 수 있는 애니메이션은 두 가지가 있습니다. Artist 객체 변화를 저장하는 ArtistAnimati
정지된 그림으로는 볼 수 없는 것들이 있습니다. 시간에 따른 변화나 입체 도형의 뒷면이 그것입니다. 애니메이션을 활용해 이를 보완합니다. 1. Matplotlib animation matplotlib.animation Matplotlib에서 사용할 수 있는 애니메이션은 두 가지가 있습니다. Artist 객체 변화를 저장하는 ArtistAnimati
Matplotlib으로 3D Plot을 할 수 있습니다. 많은 분들이 알고 있는 사실이지만 적극적으로 쓰이지 않습니다. seaborn KDE plot을 3D로 표현합니다. 5. KDE plot 2D KDE plot은 전달력이 좋고, 은근 예쁘기도 합니다. 두 인자의 상관 분포를 표현하는 그림으로, 데이터의 밀도를 선이나 색으로 나타냅니다. 2D 공간을
자주 있는 일은 아니지만 3차원 곡면을 그릴 때가 있습니다. 어떤 분은 원자를 표현하느라, 또는 쇠구슬을 표현하느라 구가 필요할지도 모릅니다. 저는 업무상 태양이 하늘에 떠 있는 지점을 고민할 때가 많아서 반구가 필요합니다. 과거에는 원자의 3차원 에너지를 표현하느라 이런 그림이 필요했습니다. 1. 데이터 준비 wikipedia: Spherical co
Matplotlib으로 3D Plot을 할 수 있습니다. 많은 분들이 알고 있는 사실이지만 적극적으로 쓰이지 않습니다. 막상 쓰려면 너무 낯설기도 하고 잘 모르기도 하기 때문입니다. Reference matplotlib tutorial: The mplot3d Toolkitnumpy.meshgrid 3. 3D Visualization 일반적으로는 x,
Matplotlib으로 3D Plot을 할 수 있습니다. 많은 분들이 알고 있는 사실이지만 적극적으로 쓰이지 않습니다. 막상 쓰려면 너무 낯설기도 하고 잘 모르기도 하기 때문입니다. Reference matplotlib tutorial: The mplot3d Toolkitnumpy.meshgrid 1. 예제 데이터1.1. 공식 예제 데이터 위 그림
PCA는 데이터의 숨겨진 패턴을 드러내줍니다. Feature Space의 데이터 분포 중 가장 넓게 분포한 것부터 찾아주기 때문에 X Feature들만으로는 보기 어려운 패턴을 찾을 수 있습니다. X 인자들의 분포 패턴에 Y feature를 얹어서 그려봅시다. Feature engineering을 위한 실마리를 찾고자 합니다. 1. 데이터 이번 예시는