Python을 이용한 연구데이터 시각화 Part 2
공대 대학원생을 위한 충북대학교 연구방법론 수업에서 발표한 내용입니다.일부를 나누어 두 번째 영상을 올립니다. Google Colab에서 matplotlib으로 그림을 그립니다. 실습 코드: https://bit.ly/3ezUoZJ 기본 3.2.2 버전을 3.4.1로 올려서 사용합니다. 한글 출력도 가능하도록 합니다. Matplotlib의 두
공대 대학원생을 위한 충북대학교 연구방법론 수업에서 발표한 내용입니다.일부를 나누어 두 번째 영상을 올립니다. Google Colab에서 matplotlib으로 그림을 그립니다. 실습 코드: https://bit.ly/3ezUoZJ 기본 3.2.2 버전을 3.4.1로 올려서 사용합니다. 한글 출력도 가능하도록 합니다. Matplotlib의 두
공대 대학원생을 위한 충북대학교 연구방법론 수업에서 발표한 내용입니다.일부를 나누어 첫 번째 영상을 올립니다. 공대를 다니면 많은 숫자를 만납니다. 이 숫자는 잘 보이지 않습니다. 숫자의 패턴과 의미를 파악하는 방법이 데이터 시각화입니다. 코드로 하는 시각화는 GUI대비 장점이 많습니다. python으로 시작해봅시다. 이번 영상에서는 matplot
부족한 데이터는 기존 분포를 반영해 만들 수 있습니다. 마르코프 체인 몬테카를로(MCMC) 방법의 일종인 깁스 샘플링(Gibbs Sampling)을 사용합시다. matplotlib 3.4. 버전에서 추가된 subfigure와 subplot_mosaic 기능도 실습해보고, matplotlib을 이용해 3D plot 애니메이션도 만들어 봅니다. contri
데이터 불균형으로 인해 train, validation, test dataset의 결과가 따로 놉니다. 층화추출로 데이터를 최대한 균등하게 분할합시다. hyperparameter도 라이브러리를 사용해 편리하게 피팅합시다. 6. Validation set 고정 새로운 노트북을 만들어 데이터를 불러옵니다.123456789101112131415%matplot
contributor: 김홍비님 지난 글에 이어 GridSearchCV를 시각화해봅니다. 화면이라는 매체의 제약상 한 번에 두 개의 변수밖에 바꾸지 못합니다. 그런데도 제법 속이 뚫리고 다음에 뭘 할지 아이디어가 생깁니다. 4. 비선형 모델: kernel SVM sklearn: svm.SVR 선형 모델로는 한계가 있는 것 같습니다. 비선형성을 가
데이터 시각화는 머신러닝 과정을 확인하기 좋습니다. 하이퍼파라미터에 따라 확인할 값이 여럿 있고, 숫자로 확인할 수도 있지만 눈에 잘 들어오지 않아 그림으로 표현해 보았습니다. 1. 데이터 & 분석 설정 What’s new in Matplotlib 3.4.0 필요한 라이브러리들을 불러옵니다. 업데이트된 matplotlib 버전 3.4.1을 사
D&I Learning Day 2021에서 발표한 내용입니다. 누군가에게 보이기 위한 작업으로서의 데이터 시각화롤 고민했고,최선의 의사 결정을 위한 조언이라는 결론을 얻었습니다. 예시를 위해 지난 글을 작성했고업무적, 기술적인 면이 아닌 시각적인 면에서 제 의도와 이유를 설명하는 발표입니다. 다양성과 포용성을 위한 AI라는 취지의 행사입
데이터 시각화는 예쁜 그림에 머물러서는 안 된다고 생각합니다. 데이터 분석의 일환인 만큼 분석의 목적에 충실해야 하는 것은 물론이고, 데이터 시각화를 수행하는 사람만큼 데이터를 깊이 파는 사람이 없습니다. 최고의 조언자로서의 데이터 시각화에 도전해봅니다. 1. 데이터 Pega Devlog: 수능 Trend Visualization한국교육과정평가원 대학수
contributor : Jerry Kim 색을 고르다 보면 이런 단어들을 만납니다:Brightness, Lightness, Value, Luminosity, Luma 우리 말로는 모두 명도, 명도, 명도, 명도, 명도이지만 의미가 모두 다릅니다. 같은 뜻으로 생각하면 실수할 수도 있으니 한번 짚고 넘어갑시다. 1. 용어 정리 Gilchrist, “
제 직장에서 진행한 에너지 + AI 학습조직 발표입니다. 2021.02.24 발표영상입니다. 여러 커뮤니티를 통해 머신러닝, 딥러닝 실수 사례를 모았습니다. 사례를 모아주신 분들께 깊은 감사 말씀을 드립니다. 60여건의 사례 중 데이터 관련 사례를 일부 모아 발표했습니다. 발표자료는 여기에서 다운로드 받으실 수 있습니다.