Home

머신 러닝 파이프라인

한국에너지기술연구원 AI 학습조직에서는 2022년 한 해동안 머신러닝을 공부하고 있습니다. scikit-learn 기능 중 데이터 전처리와 머신 러닝을 안정적으로 수행할 수 있는 파이프라인을 소개합니다. one-hot encoding과 standard scaling도 그냥 하면 안 됩니다. train set으로 학습해서 test set에 적용해야 합니다

머신 러닝 기본 개념

한국에너지기술연구원 AI 학습조직에서는 2022년 한 해동안 머신러닝 진도를 나가기로 했습니다. scikit-learn을 중심으로 머신러닝 실습을 할 예정입니다. 코드를 만지기 전 기본 개념을 전달드리는 강의를 진행했습니다. 강의 자료는 여기에서 다운받으실 수 있습니다 발표 영상입니다 (Youtube Link) 바쁜 연구원 일정 속에 변동

reliability of Covid-19 self test kit

코로나-19 자가진단키트에서 두 줄이 떴습니다. 올 게 왔나 싶으면서도, 이거 얼마나 믿을만한지 몹시 궁금했습니다. 선별진료소 결과를 기다리며 분류 기초를 복습합니다. 1. 사건의 발단 식품의약품안전처: 자가진단키트 양성예측도 76%경향신문: 자가검사키트, 민감도 특이도는 뭐고 양성예측도는 또 뭔가요? 3일 전, 안녕하시냐고 묻는 안녕하지 못한 내

ridge-map

지형을 중첩된 line plot으로 그리는 ridgemap 라이브러리를 소개합니다. Matplotlib 생태계의 일원으로 쉽게 사용할 수 있습니다. 소스 코드를 조금 고쳐줄 필요가 있습니다. 1. ridge-map pypi: ridge-map/ 설명 대신 그림을 한 장 보여드리겠습니다. 아름다운 산악 지형의 풍경이 고전적인 느낌으로 그려져 있습

AI를 하고 싶은 C-level의 흔한 실수들

연구개발특구(innopolis)에서 CEO 대상 AI 인사이트 교육 발표를 했습니다. (22.03.24.) 공지된 제목은 데이터, 다이아몬드 또는 진흙이었습니다만 제 앞에서 발표하신 고우영 님의 발표를 보고 연장선상에서 바꿨습니다. 수정된 제목은 AI를 하고 싶은 C-level의 흔한 실수들입니다. 발표 영상입니다 (Youtube Link)

joinstyle & capstyle

오늘은 매우 사소한 글입니다. Matplotlib에서 그려지는 선의 꼭지점과 끝점 표현입니다. 사소하지만 신경을 거스르는 일을 해결합시다. 1. motivation: Pie chart 다른 그림에 비해 자주 그리는 그림은 아닙니다. 그런 만큼 손에 익히기 쉽지 않은데, 정리를 한번 하겠습니다. 아보카도, 바나나, 체리 판매량이 각기 40, 70, 1

gravity

파이썬은 과학과 공학을 구현하기 좋습니다. 간단한 몇 개의 코드로 방정식을 구현하고, 시각화 기법을 사용해 우리 눈으로 봅니다. 1. 만유인력 wikipedia: gravity 질량이 있는 물체끼리는 끌어당기는 힘이 있습니다. 만유인력이라고 합니다. 뉴턴이 발견한 것으로 유명하고, 중력파는 우주의 비밀을 여는 열쇠가 됩니다. 두 물체의 질량이 $m_

colorsys - Conversions between Color Systems

이미지를 처리하는 파이썬 라이브러리는 많습니다. 가장 잘 알려진 opencv와 pillow를 비롯해서 matplotlib도 이미지 처리를 합니다. colorsys라는 파이썬 기본 라이브러리가 있습니다. 색 공간을 변환하는 라이브러리인데, 이것만 잘 써도 할 수 있는 게 많습니다. 1. 예제 이미지 wikimedia commons: Siberischer

Sci Vis) 2. In a Far Distance Galaxy

Scientific Visualization: Python + Matplotlib 책에는 최고 수준의 시각화 기술이 담겼습니다. 높은 수준에 비해 설명이 다소 짧아 초심자에게 어려워 보였습니다. 저자인 Nicolas P. Rougier 박사님의 허가 하에 일부를 해설합니다. 이 시리즈는 해외 독자를 위해 영어를 회색 상자 안에 병기합니다. .e

사례로 들여다보는 데이터 시각화 Q&A

한국지능정보사회진흥원(NIA)에서 또 다른 기회를 주셨습니다. (21.12.03.) 데이터 시각화를 잘 하는 방법에 대한 개괄적인 발표였습니다. 발표를 녹화하지 않아 동영상은 제공이 불가합니다. 발표자료는 여기에서 다운로드받으실 수 있습니다. 사전 질문이 매우 많았습니다. NIA에서 일차 추려주셨는데도 수를 세어보니 56개더군요. 많은 분들의 관심