데이터 분할과 교차 검증
한국에너지기술연구원 AI 학습조직에서는 2022년 한 해동안 머신러닝을 공부하고 있습니다. scikit-learn 기능 중 데이터를 class 비율대로 분류하는 stratified K fold를 소개하고, 모든 데이터를 학습과 검증에 활용하는 cross validation을 다룹니다. 강의 자료는 여기에서 다운받으실 수 있습니다 발표 영상 : (Y
한국에너지기술연구원 AI 학습조직에서는 2022년 한 해동안 머신러닝을 공부하고 있습니다. scikit-learn 기능 중 데이터를 class 비율대로 분류하는 stratified K fold를 소개하고, 모든 데이터를 학습과 검증에 활용하는 cross validation을 다룹니다. 강의 자료는 여기에서 다운받으실 수 있습니다 발표 영상 : (Y
PyTorch는 현재 가장 인기있는 딥러닝 라이브러리 중 하나입니다. 학습 세부 사항을 지정하기 위해 Callback으로 다양한 기능을 지원합니다. skorch는 PyTorch를 scikit-learn과 함께 사용할 수 있게 해 줍니다. skorch도 PyTorch callback을 이용할 수 있습니다. 글이 길어 세 개로 나눕니다. 세 번째로, s
PyTorch는 현재 가장 인기있는 딥러닝 라이브러리 중 하나입니다. 학습 세부 사항을 지정하기 위해 Callback으로 다양한 기능을 지원합니다. skorch는 PyTorch를 scikit-learn과 함께 사용할 수 있게 해 줍니다. skorch도 PyTorch callback을 이용할 수 있습니다. 글이 길어 세 개로 나눕니다. 두 번째로, s
PyTorch는 현재 가장 인기있는 딥러닝 라이브러리 중 하나입니다. 학습 세부 사항을 지정하기 위해 Callback으로 다양한 기능을 지원합니다. skorch는 PyTorch를 scikit-learn과 함께 사용할 수 있게 해 줍니다. skorch도 PyTorch callback을 이용할 수 있습니다. 글이 길어 세 개로 나눕니다. 첫 번째로, 데
seaborn에는 regplot이라는 기능이 있습니다. 산점도, 회귀선, 신뢰 구간을 동시에 표현해주는 강력한 기능입니다. 그리고 같은 결과를 출력하는 lmplot이 있습니다. 같은 점과 다른 점을 확인합니다. 1. seaborn regplot seaborn.regplot seaborn에는 regplot 함수가 있습니다. scatter plot, r
경향신문과 언더스코어가 공동으로 조사한 ‘부모찬스’기사가 실렸습니다. 기사 내용과 별개로, 이 기사에 활용된 KDE plot에 대해 여러 분들이 여러 의견을 표했습니다. KDE plot의 특징과 한계를 살펴봅니다. 언더스코어경향신문: 두 얼굴의 공정(1) 조국과 정호영, 누가 더 ‘불공정’합니까?경향신문: 정치 성향에 따라 부모찬스에 들이댄 ‘공정 잣
한국에너지기술연구원 AI 학습조직에서는 2022년 한 해동안 머신러닝을 공부하고 있습니다. scikit-learn 기능 중 데이터 전처리와 머신 러닝을 안정적으로 수행할 수 있는 파이프라인을 소개합니다. one-hot encoding과 standard scaling도 그냥 하면 안 됩니다. train set으로 학습해서 test set에 적용해야 합니다
한국에너지기술연구원 AI 학습조직에서는 2022년 한 해동안 머신러닝 진도를 나가기로 했습니다. scikit-learn을 중심으로 머신러닝 실습을 할 예정입니다. 코드를 만지기 전 기본 개념을 전달드리는 강의를 진행했습니다. 강의 자료는 여기에서 다운받으실 수 있습니다 발표 영상입니다 (Youtube Link) 바쁜 연구원 일정 속에 변동
코로나-19 자가진단키트에서 두 줄이 떴습니다. 올 게 왔나 싶으면서도, 이거 얼마나 믿을만한지 몹시 궁금했습니다. 선별진료소 결과를 기다리며 분류 기초를 복습합니다. 1. 사건의 발단 식품의약품안전처: 자가진단키트 양성예측도 76%경향신문: 자가검사키트, 민감도 특이도는 뭐고 양성예측도는 또 뭔가요? 3일 전, 안녕하시냐고 묻는 안녕하지 못한 내
지형을 중첩된 line plot으로 그리는 ridgemap 라이브러리를 소개합니다. Matplotlib 생태계의 일원으로 쉽게 사용할 수 있습니다. 소스 코드를 조금 고쳐줄 필요가 있습니다. 1. ridge-map pypi: ridge-map/ 설명 대신 그림을 한 장 보여드리겠습니다. 아름다운 산악 지형의 풍경이 고전적인 느낌으로 그려져 있습